DS05-10151-4E

MEMORY CMOS 512K × 8 BIT FAST PAGE MODE DYNAMIC RAM

MB81V4800S-60/-70

CMOS 524,288 × 8 bit Fast Page Mode Dynamic RAM

DESCRIPTION

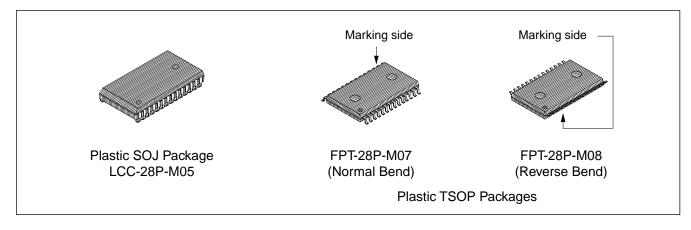
The Fujitsu MB81V4800S is a fully decoded CMOS Dynamic RAM (DRAM) that contains 4,194,304 memory cells accessible in 8-bit increments. The MB81V4800S features a "fast page" mode of operation whereby high-speed access of up to 512×8 -bits of data can be selected in the same row. The MB81V4800S-60/-70 DRAMs are ideally suited for memory applications such as embedded control, buffer, portable computers, and video imaging equipment where very low power dissipation and high bandwidth are basic requirements of the design.

The MB81V4800S is fabricated using silicon gate CMOS and Fujitsu's advanced four-layer polysilicon process. This process, coupled with three-dimensional stacked capacitor memory cells, reduces the possibility of soft errors and extends the time interval between memory refreshes.

ABSOLUTE MAXIMUM RATINGS (See NOTE)

Parameter	Symbol	Value	Unit
Voltage at any pin relative to Vss	VIN, VOUT	-0.5 to +4.6	V
Voltage of Vcc supply relative to Vss	Vcc	-0.5 to +4.6	V
Power Dissipation	P₀	1.0	W
Short Circuit Output Current	Іоит	50	mA
Storage Temperature	Тѕтс	-55 to +125	°C

NOTE: Permanent device damage may occur if the above **Absolute Maximum Ratings** are exceeded. Functional operation should be restricted to the conditions as detailed in the operational sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

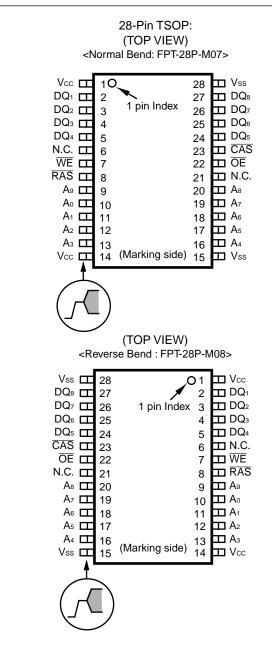

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields. However, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high impedance circuit.

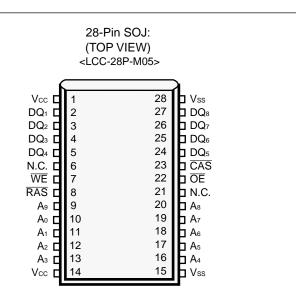
■ PRODUCT LINE & FEATURES

Param	eter	MB81V4800S-60	MB81V4800S-70
RAS Access Time		60 ns max.	70 ns max.
CAS Access Time		20 ns max.	20 ns max.
Address Access Time		30 ns max.	35 ns max.
Random Cycle Time		110 ns max.	125 ns min.
Fast Page Mode Cycle Tim	e	40 ns min.	45 ns min.
Low Power Dissipation	Operating current		209 mW max.
	Standby current	7.2 mW max. (LVTTL level),3	.6 mW max. (CMOS level)

- Low Vcc operating
- 524,288 words \times 8 bit organization
- Silicon gate, CMOS, 3D-Stacked Capacitor Cell
- All input and output are LVTTL comaptible
- 1024 refresh cycles every 16.4 ms
- 10 rows \times 9 columns, addressing scheme
- Early Write or $\overline{\text{OE}}$ controlled Write capability
- RAS only CAS-before-RAS, or Hidden Refresh
- Self refresh function
- Fast page Mode, Read-Modify-Write capability
- On chip substrate bias generator for high performance

PACKAGE


Package and Ordering Information


- 28-pin plastic (400 mil) SOJ, order as MB81V4800S-xxPJ
- 28-pin plastic (400 mil) TSOP-II with normal bend leads, order as MB81V4800S-xxPFTN
- 28-pin plastic (400 mil) TSOP-II with reverse bend leads, order as MB81V4800S-xxPFTR

■ CAPACITANCE

			(T _A = 2	$25^{\circ}C, f = 1 MHz$
Parameter	Symbol	Тур.	Max.	Unit
Input Capacitance, Ao to Ao	CIN1	—	5	pF
Input Capacitance, RAS, CAS, WE, OE	CIN2		7	pF
Input/Output Capacitance, DQ1 to DQ8	CDQ	—	7	pF

PIN ASSIGNMENTS AND DESCRIPTIONS

Designator	Function
A ₀ to A ₉	Address inputs row : Ao to A9 column : Ao to A8 refresh : Ao to A9
RAS	Row address strobe.
CAS	Column address strobe.
WE	Write Enable.
ŌĒ	Output enable.
DQ1 to DQ8	Data Input/ Output
Vcc	+3.3 volt power supply.
Vss	Circuit ground.

RECOMMENDED OPERATING CONDITIONS

Parameter	Notes	Symbol	Min.	Тур.	Max.	Unit	Ambient Operating Temp
	1	Vcc	3.0	3.3	3.6	V	
Supply Voltage		Vss	0	0	0	V	
Input High Voltage, all inputs	1	Vін	2.0	_	Vcc +0.3	V	0°C to +70°C
Input Low Voltage, all inputs(*)	1	VIL	-0.3	_	0.8	V	
Input Low Voltage, DQ(*)	1	Vild	-0.3		0.8	V	

* : Undershoots of up to -2.0 volts with a pulse width not exceeding 20ns are acceptable.

■ FUNCTIONAL OPERATION

ADDRESS INPUTS

Nineteen input bits are required to decode any eight of 4,194,304 cell addresses in the memory matrix. Since only ten address bits are available, the column and row inputs are separately strobed by \overline{CAS} and \overline{RAS} as shown in Figure 5. First, ten row address bits are input on pins A₀-through-A₉ and latched with the row address strobe (\overline{RAS}) then, nine column address bits are input on pins A₀-through-A₉ and latched with the column address strobe (\overline{CAS}). Both row and column addresses must be stable on or before the falling edge of \overline{CAS} and \overline{RAS} , respectively. The address latches are the flow-through type; thus, address information appearing after t_{RAH} (min.) + t_T is automatically treated as the column address to start select operation of the column decode. Therefore, to have correct data within t_{RAC}, the column address should be input within t_{RAD} (max.). If t_{RAD} > t_{RAD} (max.), the access time is the later one of either t_{AA} or t_{CAS}.

WRITE ENABLE

The read or write mode is determined by the logic state of \overline{WE} . When \overline{WE} is active Low, a write cycle is initiated; when \overline{WE} is High, a read cycle is selected. During the read mode, input data are ignored. When an early write cycle is executed, the output buffers stay in a high-impedance state during the cycle.

DATA INPUT

Input data are written into memory in either of three basic ways—the early write cycle, the \overline{OE} (delayed) write cycle, and the read-modify-write cycle. The falling edge of \overline{WE} or \overline{CAS} , whichever is later, serves as the input data-latch strobe. In the early write cycle, the input data (DQ₁-DQ₈) are strobed by \overline{CAS} and the setup/hold times are referenced to falling edge of \overline{CAS} because \overline{WE} goes Low before \overline{CAS} . In the delayed write or read-modify-write cycle, \overline{WE} goes Low after \overline{CAS} ; thus, input data is strobed by \overline{WE} and all setup/hold times are referenced to the falling edge of \overline{WE} . Since this device is an I/O common type, when the delayed write or read-modified-write is executed, I/O data have to be controlled by \overline{OE} .

DATA OUTPUT

The three-state buffers are LVTTL compatible with a fanout of one TTL load. Polarity of the output data is identical to that of the input; the output buffers remain in the high-impedance state until the column address strobe goes Low. When a read or read-modify-write cycle is executed, valid outputs are obtained under the following conditions:

- t_{RAC} : from the falling edge of \overline{RAS} when t_{RCD} (max.) is satisfied.
- tcac : from the falling edge of \overline{CAS} when trcd is greater than trcd (max.).
- taa : from column address input when trad is greater than trad (max.).
- to EA : from the falling edge of \overline{OE} when \overline{OE} is brought Low after trac, tcac, or taa.

The data remains valid until either \overline{CAS} or \overline{OE} returns to a High logic level. When an early write is executed, the output buffers remain in a high-impedance state during the entire cycle.

FAST PAGE MODE OF OPERATION

The fast page mode of operation provides faster memory access and lower power dissipation. The fast page mode is implemented by keeping the same row address and strobing in successive column addresses. To satisfy these conditions, \overline{RAS} is held Low for all contiguous memory cycles in which row addresses are common. For each fast page of memory, any of 512 × 8-bits can be accessed. Fast page mode operations need not be addressed sequentially and combinations of read, write, and/or ready-modify-write cycles are permitted.

■ DC CHARACTERISTICS

(Recommended operating conditions unless otherwise noted.) Notes 3

Deremete	Notoo	Symbol	Conditions		Values	6	Unit
Paramete	er Notes	Symbol	Conditions	Min.	Тур.	Max.	Unit
Output high voltage	1	Vон	Іон = -2.0 mA	2.4	_	_	V
Output low voltage	1	Vol	IoL = +2.0 mA	_	_	0.4	V
Input leakage currer	it (any input)	lı(L)	$\begin{array}{l} 0 \; V \leq V_{\text{IN}} \leq 3.6 \; \text{V}; \\ 3.0 \; \text{V} \leq \text{Vcc} \leq 3.6 \; \text{V}; \\ \text{Vss} = 0 \; \text{V}; \; \text{All other pins} \\ \text{not under test} = 0 \; \text{V} \end{array}$	pins -10 - 10		10	μΑ
Output leakage curre	ent	DQ(L)	$0 V \le V_{OUT} \le 3.6 V;$ Data out disabled	-10	_	10	
Operating current (Average Power	MB81V4800S-60		RAS & CAS cycling;			65	
supply current) 2	MB81V4800S-70		t _{RC} = min.	_		58	mA
Standby current	LVTTL level		$\overline{RAS} = \overline{CAS} = V_{H}$			2.0	mA
(Power supply current)	CMOS level	Icc2	$\overline{RAS} = \overline{CAS} \ge V_{CC} - 0.2 V$			1.0	mA
Refresh current #1	MB81V4800S-60		CAS = V⊮, RAS cycling;			65	
(Average power supply current) 2	MB81V4800S-70	Іссз	$t_{RC} = min.$	-	-	58	mA
Fast Page Mode	MB81V4800S-60	l	RAS = V⊩, CAS cycling;			65	mA
current 2	MB81V4800S-70	Icc4	t _{PC} = min.	_	_	58	ША
Refresh current #2	MB81V4800S-60	RAS cycling;				65	
(Average power supply current) 2	MB81V4800S-70	Icc₅ CAS-before-RAS; tRc = min.		-	-	58	mA
Refresh current #3 (Average power sup	ply current) 2	Іссэ	$\overline{RAS} = V_{IL}, \overline{CAS} = V_{IL}$ Self refresh; t _{RASS} = min.	_		1000	μΑ

■ AC CHARACTERISTICS

(At recommended operating conditions unless otherwise noted.) Notes 3, 4, 5

No	Baramotor	Notes	Symbol	MB81V4	800S-60	MB81V4	Unit	
No.	Parameter	Notes	Symbol	Min.	Max.	Min.	Max.	Unit
1	Time Between Refresh		t REF	—	16.4	—	16.4	ms
2	Random Read/Write Cycle Time		trc	110	—	125	—	ns
3	Read-Modify-Write Cycle Time		t RWC	150		170		ns
4	Access Time from RAS	6, 9	t RAC	—	60	_	70	ns
5	Access Time from CAS	7, 9	tcac		20		20	ns
6	Column Address Access Time	8, 9	taa	—	30	—	35	ns
7	Output Hold Time		tон	0	—	0	—	ns
8	Output Buffer Turn On Delay Time		ton	0	—	0	—	ns
9	Output Buffer Turn off Delay Time	10	toff	_	15	_	15	ns
10	Transition Time		t⊤	2	50	2	50	ns
11	RAS Precharge Time		t RP	40		45		ns
12	RAS Pulse Width		t ras	60	100000	70	100000	ns
13	RAS Hold Time		trsн	20		20		ns
14	CAS to RAS Precharge Time		t CRP	0		0		ns
15	RAS to CAS Delay Time	11, 12	t RCD	20	40	20	50	ns
16	CAS Pulse Width		tcas	20	10000	20	10000	ns
17	CAS Hold Time		t csн	60		70		ns
18	CAS Precharge Time (Normal)	19	t CPN	10	_	10	—	ns
19	Row Address Set Up Time		t asr	0	—	0	—	ns
20	Row Address Hold Time		t RAH	10	—	10	—	ns
21	Column Address Set Up Time		tasc	0	—	0	—	ns
22	Column Address Hold Time		tсан	12	—	12	—	ns
23	RAS to Column Address Delay Time	13	trad	15	30	15	35	ns
24	Column Address to RAS Lead Tim	е	t RAL	30	—	35	—	ns
25	Column Address to CAS Lead Tim	е	t CAL	30	—	35	—	ns
26	Read Command Set Up Time		trcs	0	—	0	—	ns
27	Read Command Hold Time Referenced to RAS	14	t RRH	0	_	0	_	ns
28	Read Command Hold Time Referenced to CAS	14	tясн	0		0		ns
29	Write Command Set Up Time	15	twcs	0		0		ns
30	Write Command Hold Time		twcн	10	—	10	—	ns
31	WE Pulse Width		twp	10	—	10	_	ns
32	Write Command to RAS Lead Tim	е	trwL	15	—	20	_	ns

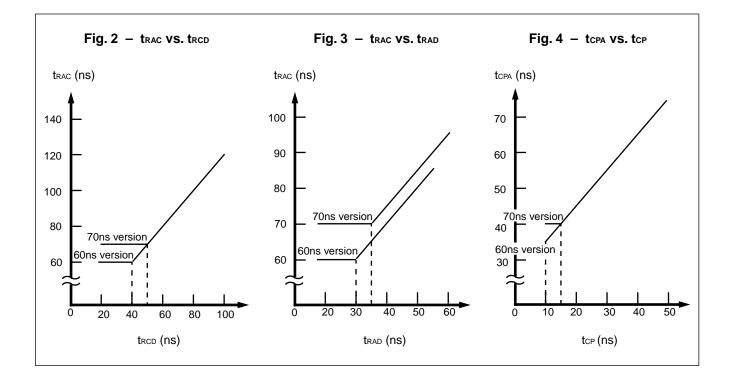
(Continued)

■ AC CHARACTERISTICS (Continued)

(At recommended operating conditions unless otherwise noted.) Notes 3, 4, 5

Na	Devementer Notes	Cumbal	MB81V4	800S-60	MB81V4	4800S-70	1.1
No.	Parameter Notes	Symbol	Min.	Max.	Min.	Max.	Unit
33	Write Command to CAS Lead Time	tcwL	15	—	18		ns
34	DIN Set Up Time	tos	0	—	0		ns
35	DIN Hold Time	tон	10		10		ns
36	RAS to WE Delay Time	t RWD	85	—	95	—	ns
37	CAS to WE Delay Time	tcwd	40	—	40		ns
38	Column Address to WE Delay Time	tawd	55	—	60		ns
39	RAS Precharge Time to \overline{CAS} Active Time (Refresh Cycles)	t RPC	10	_	10	_	ns
40	\overline{CAS} Set Up Time for \overline{CAS} -before- \overline{RAS} Refresh	tcsr	0	_	0	_	ns
41	CAS Hold Time for CAS-before-RAS Refresh	t CHR	10	_	10	_	ns
42	Access Time from OE 9	t OEA	_	20	_	20	ns
43	Output Buffer Turn Off Delay from OE	toez	_	15		15	ns
44	OE to RAS Lead Time for Valid Data	toel	10		10		ns
45	OE Hold Time Referenced to [16]	tоен	0	_	0	_	ns
46	OE to Data in Delay Time	toed	15	—	15		ns
47	DIN to CAS Delay Time 17	tozc	0	_	0		ns
48	DIN to OE Delay Time 17	tdzo	0	_	0		ns
49	Column Address Hold Time from RAS	tcdd	15		15		ns
50	Write Command Hold Time from RAS	tar	32	_	32		ns
51	DIN Hold Time Referenced to RAS	twcr	30	_	30		ns
52	CAS to Data in Delay Time	t DHR	30	_	30		ns
60	Fast Page Mode RAS Pulse Width	tRASP	60	200000	70	200000	ns
61	Fast Page Mode Read/Write Cycle Time	t _{PC}	40	_	45		ns
62	Fast Page Mode Read-Modify-Write Cycle Time	t PRWC	80		90	_	ns
63	Access Time from CAS Precharge 9, 18	tсра	_	35		40	ns
64	Fast Page Mode CAS Pulse width	t _{CP}	10		10		ns
65	Fast Page Mode RAS Hold Time from CAS Precharge	tкнср	35	_	40	_	ns
66	Fast Page Mode \overline{CAS} Precharge to \overline{WE} Delay Time	tcpwd	55	_	60	_	ns

<u>To Top / Lineup / Index</u> MB81V4800S-60/MB81V4800S-70

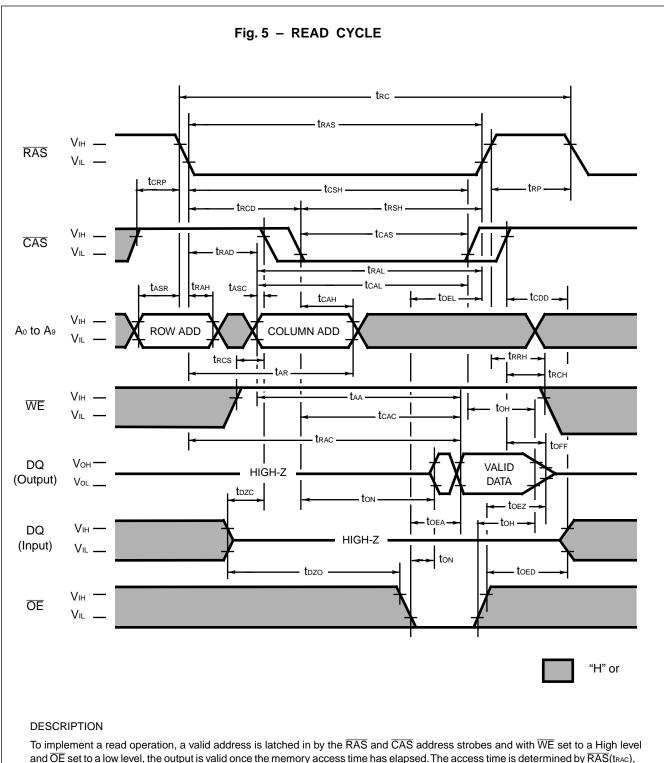

- Notes: 1. Referenced to Vss. To all Vcc (Vss) pins, the same supply voltage should be applied.
 - 2. Icc depends on the output load conditions and cycle rates; The specified values are obtained with the output open.

Icc depends on the number of address change as $\overline{RAS} = V_{IL}$ and $\overline{CAS} = V_{IH}$, $V_{IL} > -0.5$ V. Icc1, Icc3 and Icc5 are specified at one time of address change during $\overline{RAS} = V_{IL}$ and $\overline{CAS} = V_{IH}$. Icc4 is specified at one time of address change during one Page cycle.

- An Initial pause (RAS = CAS = V_H) of 200 μs is required after power-up followed by any eight RASonly cycles before proper device operation is achieved. In case of using internal refresh counter, a minimum of eight CAS-before-RAS initialization cycles instead of 8 RAS cycles are required.
- 4. AC characteristics assume $t_T = 5$ ns.
- Input voltage levels are 0 V and 3.0 V, and input reference levels are V_{IH} (min.) and V_{IL} (max.) for measuring timing of input signals. Also, the transition time (t_T) is measured between V_{IH} (min.) and V_{IL} (max.).

The output reference levels are VoH = 2.0 V and VoL = 0.8 V.

- 6. Assumes that t_{RCD} ≤ t_{RCD} (max.), t_{RAD} ≤ t_{RAD} (max.). If t_{RCD} is greater than the maximum recommended value shown in this table, t_{RAC} will be increased by the amount that t_{RCD} exceeds the value shown. Refer to Fig. 2 and 3.
- 7. If trcd \geq trcd (max.), trad \geq trad (max.), and tasc \geq taa tcac tt, access time is tcac.
- 8. If $t_{RAD} \ge t_{RAD}$ (max.) and $t_{ASC} \le t_{AA} t_{CAC} t_T$, access time is t_{AA} .
- 9. Measured with a load equivalent to one TTL loads and 100 pF.
- 10. toff and toez is specified that output buffer change to high impedance state.
- 11. Operation within the tRCD (max.) limit ensures that tRAC (max.) can be met. tRCD (max.) is specified as a reference point only; if tRCD is greater than the specified tRCD (max.) limit, access time is controlled exclusively by tCAC or tAA.
- 12. trcd (min.) = trah (min.) + 2tr + tasc (min.).
- 13. Operation within the tRAD (max.) limit ensures that tRAC (max.) can be met. tRAD (max.) is specified as a reference point only; if tRAD is greater than the specified tRAD (max.) limit, access time is controlled exclusively by tCAC or tAA.
- 14. Either tRRH or tRCH must be satisfied for a read cycle.
- 15. twcs is specified as a reference point only. If twcs ≥ twcs (min.) the data output pin will remain High-Z state through entire cycle.
- 16. Assumes that twcs < twcs (min.).
- 17. Either tozc or tozo must be satisfied.
- 18. tcpa is access time from the selection of a new column address (that is caused by changing CAS from "L" to "H"). Therefore, if tcp is long, tcpa is longer than tcpa (max.).
- 19. Assumes that \overline{CAS} -before- \overline{RAS} refresh.

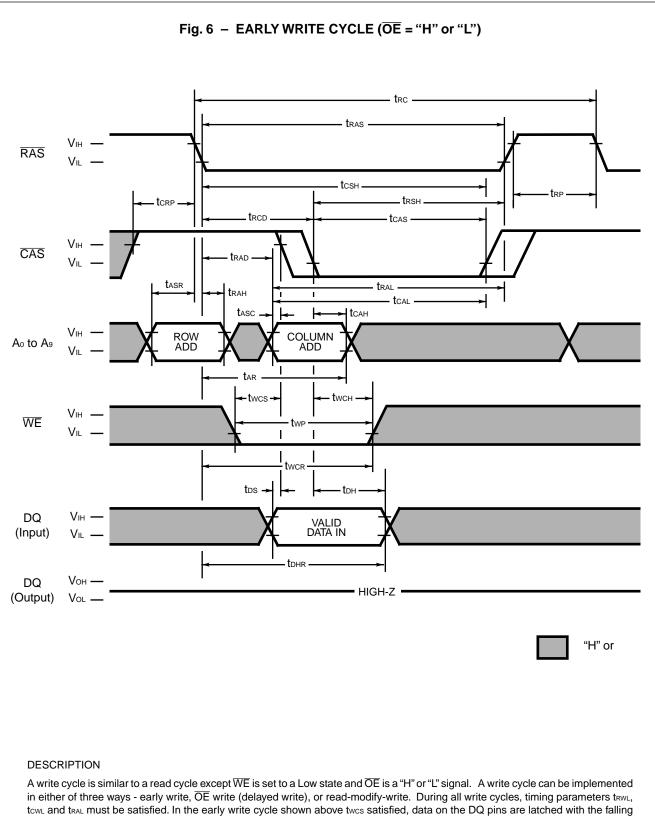

■ FUNCTIONAL TRUTH TABLE

		Clock	Input		Add	ress	Inpu	t Data		
Operation Mode	RAS	CAS	WE	ŌĒ	Row	Col- umn	Input	Output	Refresh	Note
Standby	Н	Н	Х	Х	_	_		High-Z		
Read Cycle	L	L	Н	L	Valid	Valid		Valid	Yes*	trcs ≥ trcs (min.)
Write Cycle (Early Write)	L	L	L	х	Valid	Valid	Valid	High-Z	Yes*	twcs \geq twcs (min.)
Read-Modify-Write Cycle	L	L	H→L	L→H	Valid	Valid	Valid	Valid	Yes*	
RAS-only Refresh Cycle	L	Н	х	х	Valid	_	_	High-Z	Yes	
CAS-before-RAS Refresh Cycle	L	L	Х	х	_	_	_	High-Z	Yes	$t_{CSR} \ge t_{CSR}$ (min.)
Hidden Refresh Cycle	H→L	L	Н	L				Valid	Yes	Previous data is kept.

X; "H" or "L"

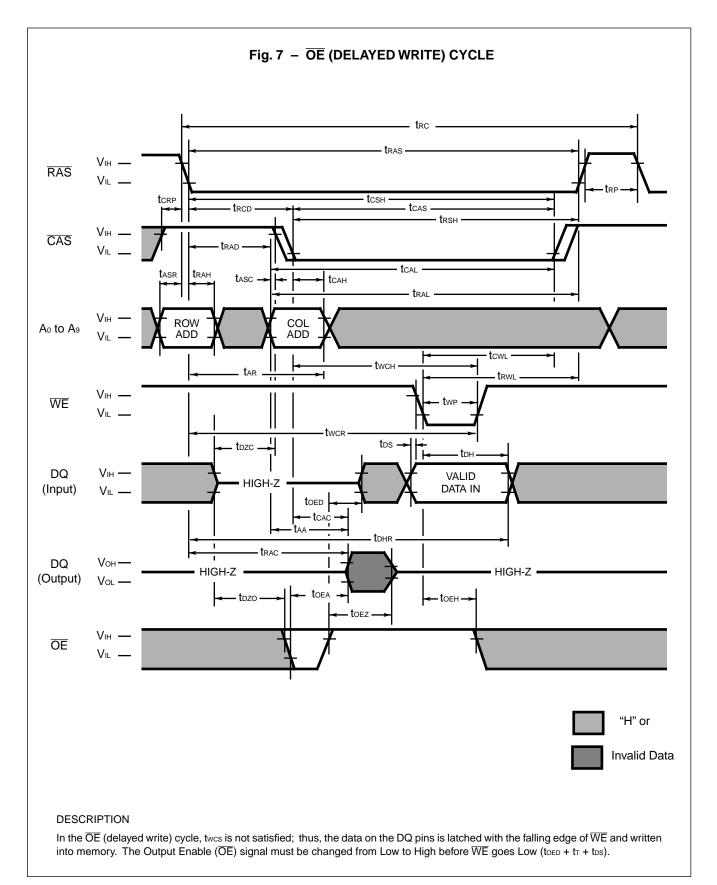
*; It is impossible in Fast Page Mode

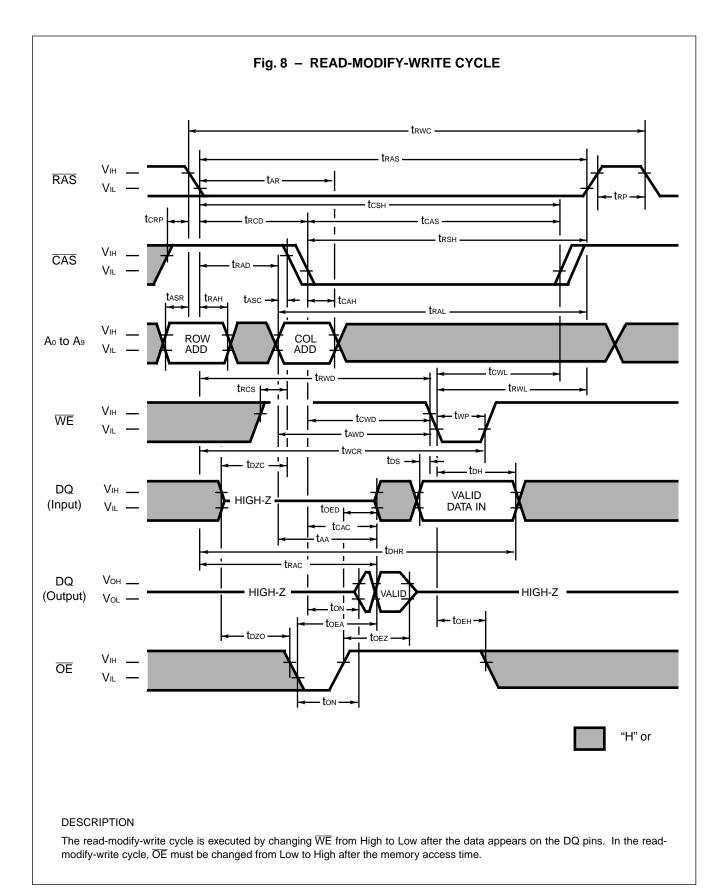
To Top / Lineup / Index MB81V4800S-60/MB81V4800S-70

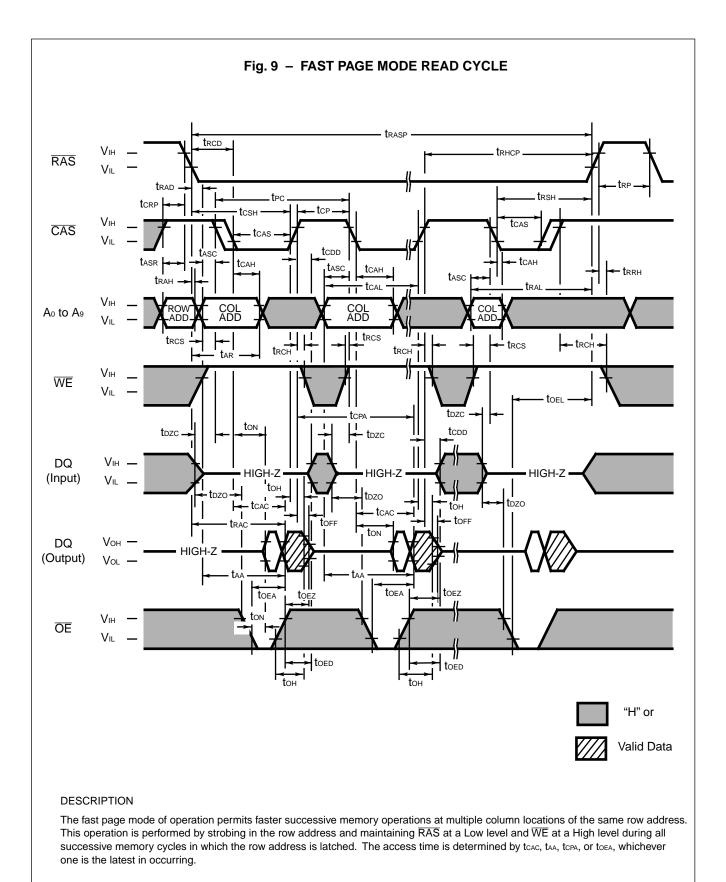

CAS (t_{CAC}), OE (t_{OEA}) or column addresses (t_{AA}) under the following conditions:

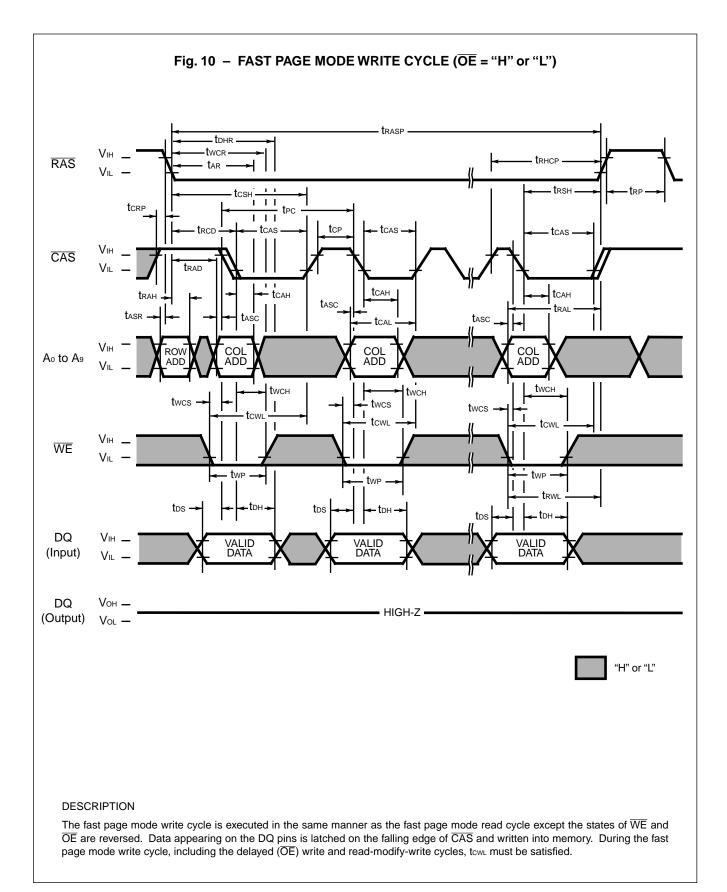
If tRCD > tRCD (max.), access time = tCAC.

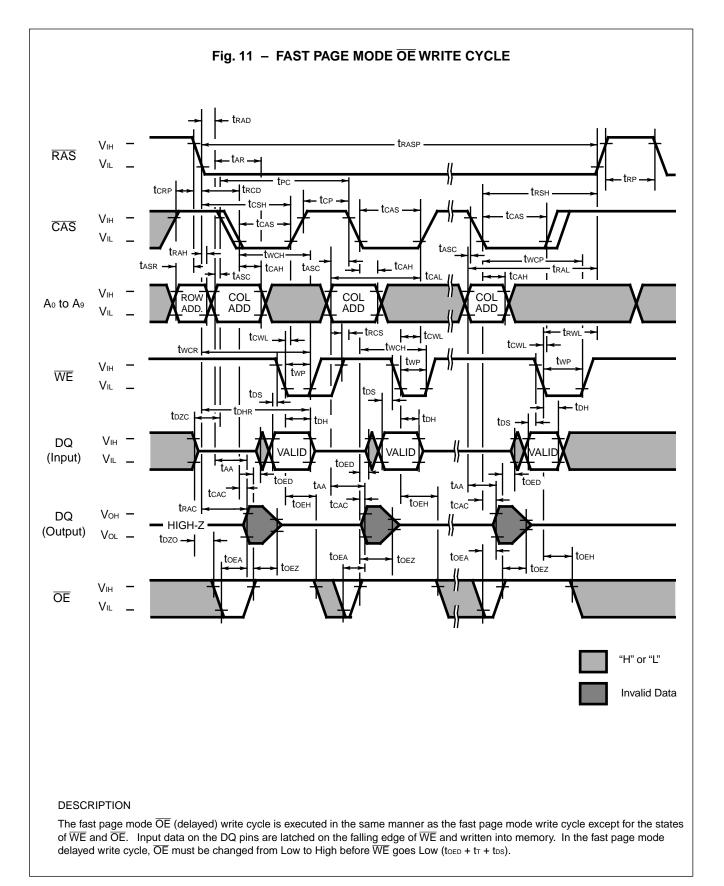
If $t_{RAD} > t_{RAD}$ (max.), access time = t_{AA} .

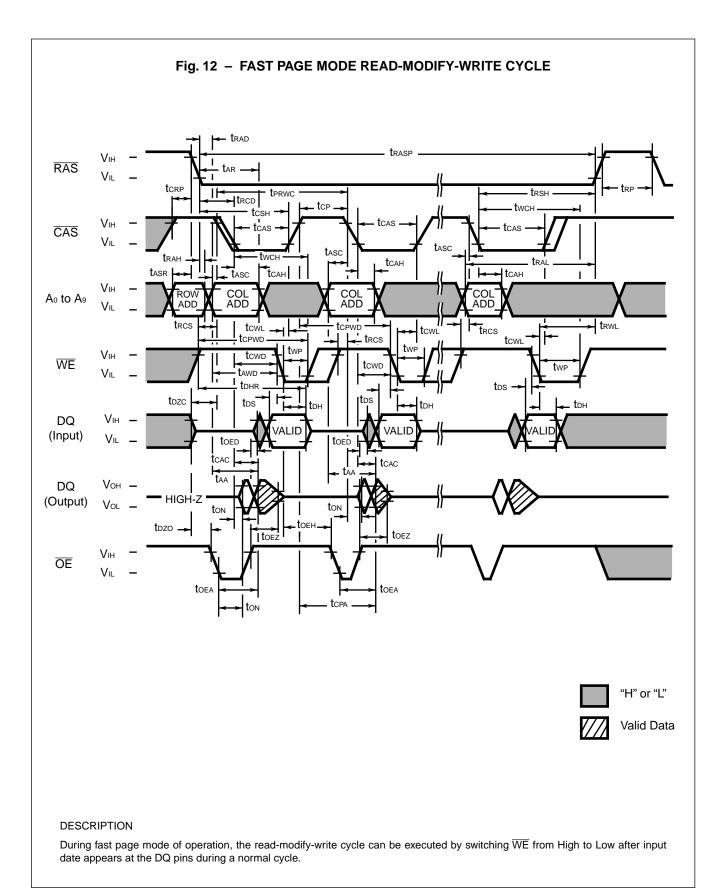

If OE is brought Low after tRAC, tCAC, or tAA (which ever occurs later), access time = tOEA.

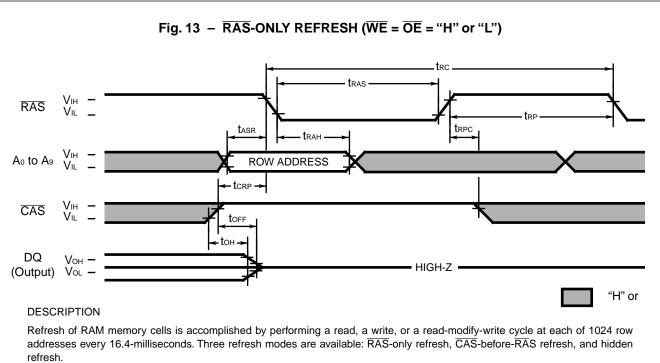

However, if either \overline{CAS} or \overline{OE} goes High, the output returns to a high-impedance state after toh is satisfied.


edge of CAS and written into memory.

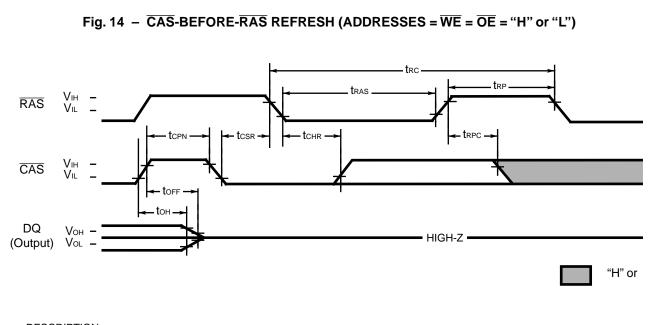

<u>To Top / Lineup / Index</u> MB81V4800S-60/MB81V4800S-70



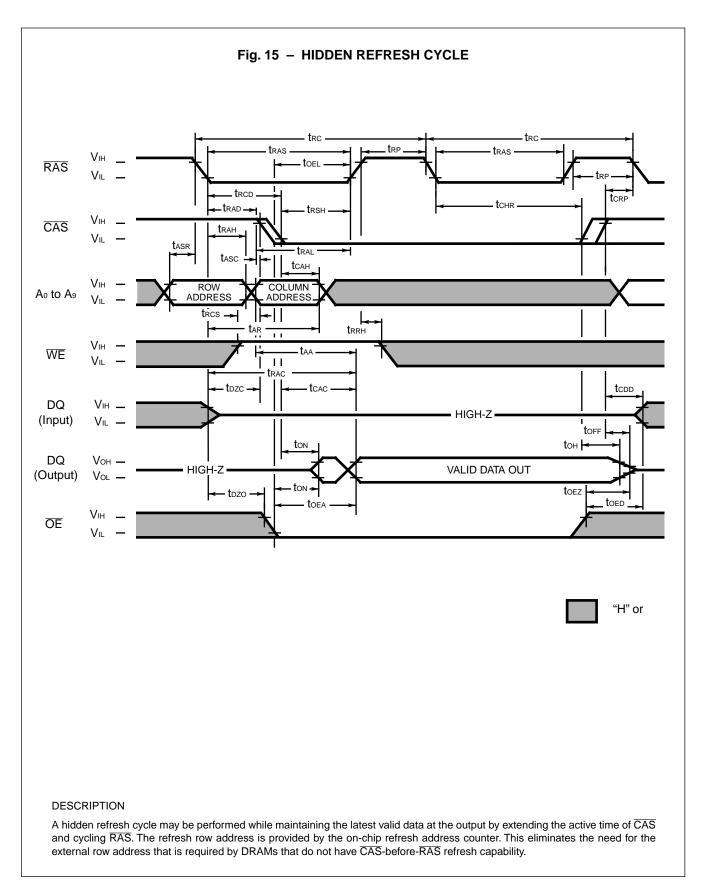

<u>To Top / Lineup / Index</u> MB81V4800S-60/MB81V4800S-70



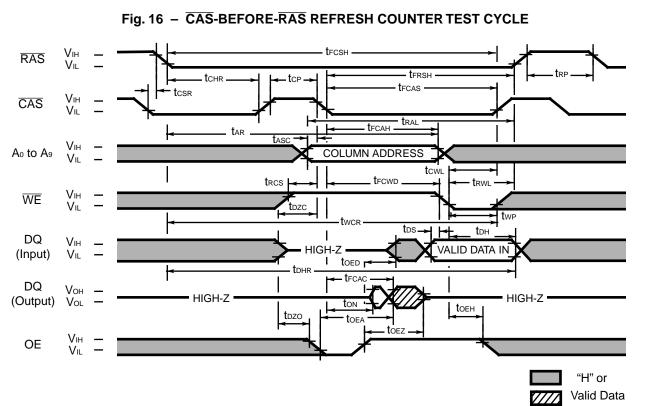
<u>To Top / Lineup / Index</u> MB81V4800S-60/MB81V4800S-70



<u>To Top / Lineup / Index</u> MB81V4800S-60/MB81V4800S-70



RAS-only refresh is performed by keeping RAS Low and CAS High throughout the cycle; the row address to be refreshed is latched on the falling edge of RAS. During RAS-only refresh, DQ pins are kept in a high-impedance state.



DESCRIPTION

CAS-before-RAS refresh is an on-chip refresh capability that eliminates the need for external refresh addresses. If CAS is held Low for the specified setup time (tcsR) before RAS goes Low, the on-chip refresh control clock generators and refresh address counter are enabled. An internal refresh operation automatically occurs and the refresh address counter is internally incremented in preparation for the next CAS-before-RAS refresh operation.

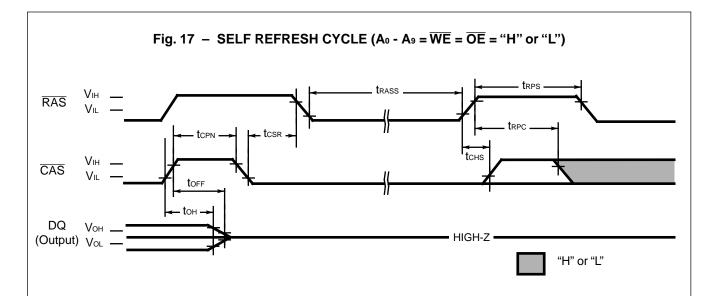
To Top / Lineup / Index MB81V4800S-60/MB81V4800S-70

DESCRIPTION

A special timing sequence using the \overline{CAS} -before- \overline{RAS} refresh counter test cycle provides a convenient method to verify the functionality of \overline{CAS} -before- \overline{RAS} refresh circuitry. If, after a \overline{CAS} -before- \overline{RAS} refresh cycle. \overline{CAS} makes a transition from High to Low while \overline{RAS} is held Low, read and write operations are enabled as shown above. Row and column addresses are defined as follows:

Row Address: Bits A₀ through A₉ are defined by the on-chip refresh counter.

Column Address: Bits A₀ through A₈ are defined by latching levels on A₀-A₈ at the second falling edge of CAS.


The CAS-before-RAS Counter Test procedure is as follows;

- 1) Initialize the internal refresh address counter by using 8 RAS only refresh cycles.
- 2) Use the same column address throughout the test.
- 3) Write "0" to all 1024 row addresses at the same column address by using normal write cycles.
- 4) Read "0" written in procedure 3) and check; simultaneously write "1" to the same addresses by using CAS-before-RAS refresh counter test (read-modify-write cycles). Repeat this procedure 1024 times with addresses generated by the internal refresh address counter.
- 5) Read and check data written in procedure 4) by using normal read cycle for all 1024 memory locations.
- 6) Reverse test data and repeat procedures 3), 4), and 5).

No.	Parameter	Symbol	MB81V	4800S-60	MB81V	4800S-70	Unit	
		•,	Min.	Max.	Min.	Max.		
90	Access Time from CAS	t FCAC	_	55	_	55	ns	
91	Column Address Hold Time	tfcah	30	_	30	—	ns	
92	CAS to WE Delay Time	tfcwd	80	_	80	—	ns	
93	CAS Pulse width	t FCAS	55	_	55	—	ns	
94	RAS Hold Time	t FRSH	55	-	55	—	ns	
95	CAS Hold Time	t FCSH	85	_	85	—	ns	

(At recommended operating conditions unless otherwise noted.)

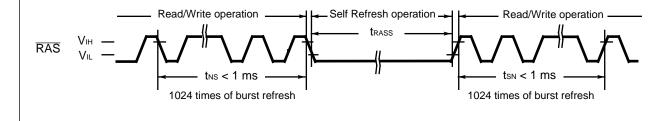
Note: Assumes that CAS-before-RAS refresh counter test cycle only.

(At recommended operating conditions unless otherwise noted.)

No.	Parameter	Symbol	MB81V4	800S-60	MB81V4	800S-70	Unit
NO.	i di di letei	Symbol	Min.	Max.	Min.	Max.	
100	RAS Pulse Width	trass	100	_	100		ns
101	RAS Precharge Time	trps	110	_	125	_	ns
102	CAS Hold Time	tснs	-50	—	-50	_	ns

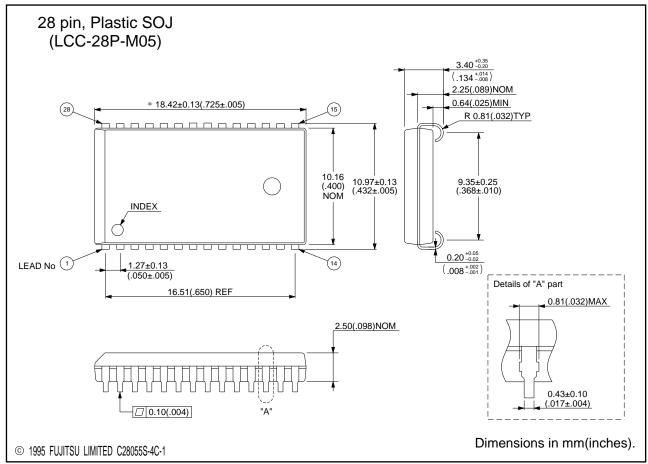
Note: Assumes Self refresh cycles only.

DESCRIPTION

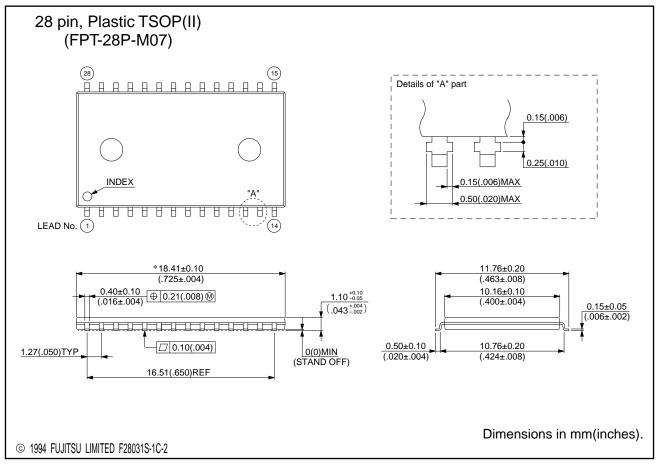

The self refresh cycle provides a refresh operation without external clock and external Address. Self refresh control circuit on chip is operated in the self refresh cycle and refresh operation can be automatically executed using internal refresh address counter. If /CAS goes to "L" (CBR) and the condition of /CAS "L" and /RAS "L" is kept for term of tRASS (more than 100 μ s), the device can be entered the self refresh cycle. And after that, refresh operation is automatically executed per fixed interval using internal refresh address counter during "/RAS = L" and "/CAS = L".

And exit from self refresh cycle is performed by toggling of /RAS and /CAS to "H" with specifying tCHS min.

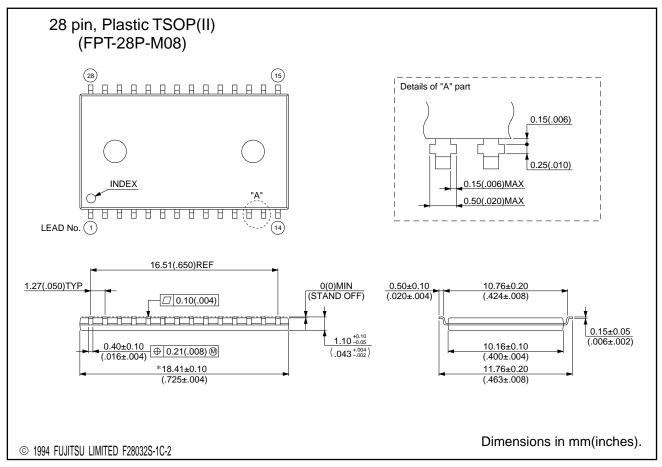
Restruction for Self refresh operation;


For self refresh operation, the notice below must be considered.

- In the case that distribut CBR refresh are operated in read/write cycles Self refresh cycles can be executed without special rule if 1024 cycles of distribut CBR refresh are executed within tREF max..
- In the case that burst CBR refresh or /RAS only refresh are operated in read/write cycles 1024 times of burst CBR refresh or 1024 times of burst /RAS only refresh must be executed before and after Self refresh cycles.


PACKAGE DIMENSIONS

(Suffix: -PJ)


PACKAGE DIMENSIONS (Continued)

(Suffix: -PFTN)

PACKAGE DIMENSIONS (Continued)

(Suffix: -PFTR)

FUJITSU LIMITED

For further information please contact:

Japan

FUJITSU LIMITED Corporate Global Business Support Division Electronic Devices KAWASAKI PLANT, 4-1-1, Kamikodanaka Nakahara-ku, Kawasaki-shi Kanagawa 211-88, Japan Tel: (044) 754-3763 Fax: (044) 754-3329

North and South America

FUJITSU MICROELECTRONICS, INC. Semiconductor Division 3545 North First Street San Jose, CA 95134-1804, U.S.A. Tel: (408) 922-9000 Fax: (408) 432-9044/9045

Europe

FUJITSU MIKROELEKTRONIK GmbH Am Siebenstein 6-10 63303 Dreieich-Buchschlag Germany Tel: (06103) 690-0 Fax: (06103) 690-122

Asia Pacific

FUJITSU MICROELECTRONICS ASIA PTE. LIMITED #05-08, 151 Lorong Chuan New Tech Park Singapore 556741 Tel: (65) 281-0770 Fax: (65) 281-0220 All Rights Reserved.

The contents of this document are subject to change without notice. Customers are advised to consult with FUJITSU sales representatives before ordering.

The information and circuit diagrams in this document presented as examples of semiconductor device applications, and are not intended to be incorporated in devices for actual use. Also, FUJITSU is unable to assume responsibility for infringement of any patent rights or other rights of third parties arising from the use of this information or circuit diagrams.

FUJITSU semiconductor devices are intended for use in standard applications (computers, office automation and other office equipment, industrial, communications, and measurement equipment, personal or household devices, etc.). CAUTION:

Customers considering the use of our products in special applications where failure or abnormal operation may directly affect human lives or cause physical injury or property damage, or where extremely high levels of reliability are demanded (such as aerospace systems, atomic energy controls, sea floor repeaters, vehicle operating controls, medical devices for life support, etc.) are requested to consult with FUJITSU sales representatives before such use. The company will not be responsible for damages arising from such use without prior approval.

Any semiconductor devices have inherently a certain rate of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions.

If any products described in this document represent goods or technologies subject to certain restrictions on export under the Foreign Exchange and Foreign Trade Control Law of Japan, the prior authorization by Japanese government should be required for export of those products from Japan.